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1. (a) Express 
3

106




x

x
 in the form p + 

3x

q
, where p and q are integers to be found. 

(1) 

 

 The sequence of real numbers u1, u2, u3, ... is such that u1 = 5.2 and un + 1 = 
3

106




n

n

u

u
. 

  

(b) Prove by induction that un > 5, for n ℤ+
. 

 (4) 

 

2. (a) (i) Explain why, for any two vectors a and b, a.b  a = 0. 

(2) 

 

  (ii) Given vectors a, b and c such that a  b = a  c, where a  0 and b  c, show that 

 

b – c = a,    where  is a scalar. 

(2) 

 

 (b) A, B and C are 2  2 matrices. 

 

  (i) Given that AB = AC, and that A is not singular, prove that B = C. 

(2) 

 

  (ii) Given that AB = AC, where A =  and B = , find a matrix C whose 

elements are all non-zero. 









21

63








10

51

 (3) 
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3. The line l1 has equation 

 

r = i + 6j – k + (2i + 3k) 

 

 and the line l2 has equation  

 

r = 3i + pj + (i – 2j + k), where p is a constant. 

 

 The plane 1 contains l1 and l2. 

 

 (a) Find a vector which is normal to 1. 

(2) 

 (b) Show that an equation for 1 is 6x + y – 4z = 16. 

 (2) 

 (c) Find the value of p. 

(1) 

 

 The plane 2 has equation r.(i + 2j + k) = 2. 

 

 (d) Find an equation for the line of intersection of 1 and 2, giving your answer in the form 

 

(r – a)  b = 0. 

(5) 

 

4. A complex number z is represented by the point P in the Argand diagram. Given that 

 

z – 3i  = 3, 

 

 (a) sketch the locus of P. 

 (2) 

(b) Find the complex number z which satisfies both z – 3i  = 3 and arg (z – 3i) = 
4
3 . 

 (4) 

 

The transformation T from the z-plane to the w-plane is given by 

 

w = 
w

i2
. 

 

(c) Show that T maps z – 3i  = 3 to a line in the w-plane, and give the cartesian equation of this 

line. 

 (5) 
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5. (a) Given that z = e
i

, show that 

z
n
 – 

n
z

1
 = 2i sin n , 

  where n is a positive integer. 

(2) 

 (b) Show that 

sin
5
   = 

16

1
(sin 5  – 5 sin 3  + 10 sin  ). 

(5) 

 (c) Hence solve, in the interval 0   < 2, 

 

sin 5 – 5 sin 3  + 6 sin   = 0. 

(5) 

 

6. The variable y satisfies the differential equation 

4(1 + x
2
)

2

2

d

d

x

y
 + 4x

x

y

d

d
 = y. 

 At x = 0, y = 1 and 
x

y

d

d
 = 

2

1
. 

 

 (a) Find the value of 
2

2

d

d

x

y
 at x = 0. 

(1) 

 (b) Use the approximations 

 

0

2

2

d

d








x

y
  

2

101 )2(

h

yyy 
 and 

0d

d








x

y
  

h

yy

2

11 
, with h = 0.1, 

 

  to find an estimate of y, at x = 0.1, to 5 decimal places. 

(6) 

 (c) Find the value of 
3

3

d

d

x

y
 at x = 0. 

(4) 

 (d) Express y as a series, in ascending powers of x, up to and including the term in x
3
. 

(2) 

 (e) Find the value that the series gives for y at x = 0.1, giving your answer to 5 decimal places. 

(1) 
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7.       A =  0 . 

















k24

22

423

 

 (a) Show that det A = 20 – 4k. 

 (2) 

    (b) Find A
–1

. 

(6) 

 

 Given that k = 3 and that  is an eigenvector of A, 
















1

2

0

 

 (c) find the corresponding eigenvalue. 

(2) 

 

 Given that the only other distinct eigenvalue of A is 8, 

 
 (d) find a corresponding eigenvector. 

 (4) 
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